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ABSTRACT

Embryo implantation in humans is interstitial, meaning the entire
conceptus embeds in the endometrium before the placental
trophoblast invades beyond the uterine mucosa into the underlying
inner myometrium. Once implanted, embryo survival pivots on
the transformation of the endometrium into an anti-inflammatory
placental bed, termed decidua, under homeostatic control of uterine
natural killer cells. Here, we examine the evolutionary context of
embryo implantation and elaborate on uterine remodelling before and
after conception in humans.We also discuss the interactions between
the embryo and the decidualising endometrium that regulate
interstitial implantation and determine embryo fitness. Together, this
Review highlights the precarious but adaptable nature of the
implantation process.
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Introduction
Human reproduction has been described as disappointingly
inefficient (Evers, 2002; Macklon et al., 2002). This statement
appears justifiable as only 40-60% of all conceptions survive to
birth in young healthy women (Hertig and Bernischke, 1967;
Zinaman et al., 1996; Norwitz et al., 2001; Jarvis, 2016). Once the
embryo embeds in the endometrium, human chorionic
gonadotrophin (hCG) rises in maternal blood and urine, thus
allowing for robust estimates of the incidence of pregnancy loss.
There is remarkable agreement amongmany studies that one in three
embryos perish after implantation (Wilcox et al., 1999; Wang et al.,
2003; Foo et al., 2020; Zinaman et al., 1996). More than half of
pregnancy losses occur so early that they escape detection with little
or no discernible impact on maternal reproductive fitness beyond
increasing the likelihood of conception in subsequent cycles (Wang
et al., 2003). The remaining losses present as clinical miscarriages,
90-95% of which occur in the first 12 weeks of pregnancy (Fig. 1)
(Magnus et al., 2019). Estimates of the rates of embryo attrition prior
to implantation are challenging and dependent on variables that
determine the likelihood of fertilisation, including the frequency
of intercourse during the fertile window of the menstrual cycle
(Dunson et al., 2002; Jarvis, 2016). Nevertheless, with conception
rates per cycle of 40% or less in young women who are trying to

conceive, ‘normal’ rates of pre-implantation embryo loss between
20 and 40% appear reasonable estimates (Fig. 1).

There is no evidence that the incidence of early pregnancy loss,
when stratified by maternal age, has changed in recent decades, or
varies significantly by geography (Hardy et al., 2016). Maternal
age, however, has an outsized impact on the likelihood of a
successful pregnancy, which is accounted for by the impacts
of meiotic errors in oocytes on pre- and post-implantation embryo
loss (reviewed by Brosens et al., 2022). In addition to maternal
age, prior adverse reproductive events are also associated with
increased risk of pregnancy failure. For example, the risk of
miscarriage increases stepwise by 7-9% with each previous
pregnancy loss independently of maternal age or other variables
(Kolte et al., 2021; Magnus et al., 2019). It is important to note that,
even after five consecutive clinical miscarriages before the age of
34 years, the likelihood of live birth in the next pregnancy
still exceeds 50% (Kolte et al., 2021). In in vitro fertilisation
(IVF), the likelihood of pregnancy also declines in function of the
number of previous implantation failures, although the effect sizes
are modest when compared with the impact of miscarriages (Smith
et al., 2015).

Thus, human reproduction is defined by high failure rates but also
good cumulative success rates, reflecting a physiological system
adapted to select against low-fitness offspring (Brosens et al., 2022).
All mammals employ strategies to mitigate against the risk of
investment in unfit offspring (Box 1). Intrinsic chromosomal
instability in human embryos (Box 2) may have necessitated the
emergence of a highly responsive and malleable uterine
environment, underpinned by a suite of evolved traits, including
cyclical menstruation, spontaneous decidualisation, and embryo
biosensing and selection (Brosens et al., 2022). Here, we examine
the evolutionary framework of these human reproductive traits and
discuss how emerging insights into the cellular dynamics and fate
decisions in the endometrium are fundamentally altering our
understanding of implantation.

Evolution of embryo implantation
Over 170 million years or more of eutherian (placental mammal)
evolution, a spectacular array of reproductive strategies has emerged,
resulting in species-specific differences in pre-implantation embryo
development, placental structures, litter size, gestational length, as
well as mechanisms that govern implantation and parturition. Rapid
reproductive innovation in placental mammals is attributed to co-
option of species-specific transposable elements (TEs) into the
regulatory DNA landscape of pre-implantation embryos, extra-
embryonic tissues and endometrial cells (Senft and Macfarlan,
2021), leading to gain and loss of numerous reproductive genes
(Lynch et al., 2011; Mika et al., 2021). In this section, we summarise
the evolutionary origins of implantation, examine the foundational
processes that enabled the formation of a stable maternal-fetal
interface and elaborate on how evolved traits, such as spontaneous
decidualisation and menstruation, shaped the implantation process in
humans.
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Implantation evolved from inflammation
Mammalian pregnancy evolved in the therian stem lineage, before the
common ancestor of marsupials and eutherian mammals (Fig. 2A)
(Chavan et al., 2021). In marsupials, such as the grey short-tailed
opossum (Monodelphis domestica), the duration of pregnancy is
shorter than the reproductive cycle, and steroid hormone profiles
before and during pregnancy are indistinguishable. For much of the
pregnancy, the marsupial embryo develops within a shell coat, which
hatches towards the end of gestation. Subsequent attachment of the
extra-embryonic membranes to the endometrial luminal epithelium
triggers an inflammatory uterine response that leads to parturition and
birth of altricial young (Fig. 2B) (Hansen et al., 2016; Griffith et al.,
2017; Stadtmauer and Wagner, 2020a). By contrast, pregnancy in
humans and other eutherians is demarcated by two inflammatory
uterine events, corresponding to embryo implantation and parturition,
respectively. Pregnancy is further characterised by a unique steroid
hormone profile and the suspension of the reproductive cycle, which
resumes following parturition. Thus, inflammation caused by
attachment of extra-embryonic cells to the endometrial luminal
epithelium serves as the ancestral signal for uterine recognition of
pregnancy in both eutherian and marsupial mammals. In marsupials,
this pro-inflammatory response is unrestrained and leads to parturition,
whereas suppression of mucosal inflammation following embryo
attachment and implantation in eutherians enabled the formation of a
stable uterine–placental interface, the extension of pregnancy beyond
the reproductive cycle and the birth of precocial offspring (Griffith
et al., 2017; Chavan et al., 2021).

Suppression of uterine inflammation
Domestication of uterine inflammation upon embryo attachment and
invasive implantation required a suite of maternal adaptations,
including prolonged ovarian progesterone production, uterine control
of placental invasion, immune tolerance and decidual transformation
of the endometrium (Fig. 2A). We next discuss the broad mechanisms
and evolution of these core processes in the context of human
pregnancy.

Progesterone production
Progesterone is produced by the corpus luteum, which forms from
the empty follicle following ovulation and regresses at the end of the
reproductive cycle. Notably, the transition from oviparity to
viviparity was facilitated by the evolution of progesterone
production by the corpus luteum to promote retention of the
conceptus in the reproductive tract (Rothchild, 2003). All
eutherians depend on sustained progesterone signalling to
suppress endometrial inflammation and maintain uterine
quiescence throughout pregnancy. This is achieved either by
extending the life span of the ovarian corpus luteum, outsourcing
progesterone production to another organ such as the placenta, or
both. For example, in humans, the implanting embryo secretes an
abundance of hCG, which temporarily rescues ovarian
progesterone production until the placenta takes over at around
6-8 weeks of pregnancy, a process known as the luteo-placental
shift (Csapo et al., 1973). CGB genes, encoding the biologically
active β-subunit of hCG, first arose in the common ancestor of the
higher primates as the result of duplication of LHB (encoding
luteinising hormone, LH). Humans have six transcriptionally
active CBG genes encoding different paralogues, the highest
number among primates (Casarini et al., 2018). By contrast, the
corpus luteum in mice remains the only source of progesterone in
pregnancy (Mesiano, 2022).

Steroid hormones, including oestradiol and progesterone, act by
binding their cognate nuclear receptors, members of steroid/thyroid
hormone superfamily of ligand-dependent transcription factors
(Brosens et al., 2004). Loss of progesterone receptor activity in the
pregnant uterus is the universal parturition signal in eutherians. In
mice, this is achieved by involution (luteolysis) of the corpus
luteum, resulting in a precipitous drop in circulating progesterone
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Fig. 1. Reproductive failure and success. Estimates of the rates of pre-
implantation embryo loss, miscarriage before and after 12 weeks of
gestation, and stillbirth.

Box 1. Physiological versus pathological pregnancy
failure
Pregnancy is a costly endeavour in all mammals. For example, maternal
energy expenditure in human pregnancy is close to physiological limits
and comparable to that of endurance athletes (Thurber et al., 2019). Not
surprisingly, mechanisms to temporarily suppress reproduction evolved
in all mammals to protect the mother against prolonged investment in a
failing pregnancy or unfit offspring (Wasser and Barash, 1983). In
humans, reproductive suppression can involve inhibition of the
hypothalamic-pituitary-ovarian axis, especially in adolescent women
(resulting in delayed menarche or anovulation) (Beehner and Lu, 2013)
and elimination of the conceptus at implantation (embryo selection)
(Macklon and Brosens, 2014) or in early pregnancy (e.g. aneuploid
miscarriage) (Brosens et al., 2022). Other species developed alternative
strategies, such as delayed fertilisation (sperm storage) (Wimsatt, 1975)
and delayed embryo implantation (embryonic diapause) (Renfree and
Fenelon, 2017). Importantly, reproductive suppression relies on
physiological mechanisms that sense deleterious (internal/external)
cues, which is fundamentally different from reproductive failure caused
by disease or trauma. As articulated by David Haig, natural selection
acting on mothers favours physiological processes that increase the
overall number of surviving offspring, not necessarily the survival of an
individual offspring (Haig, 1993; Haig, 2019). In humans, physiological
embryo selection is easily conflated with pathology. For example,
repeated implantation failure of low-fitness IVF embryos can lead to the
diagnosis of ‘recurrent implantation failure’, an ill-defined clinical label
that often spurs uninformative investigations and ineffective ad hoc
treatments (Polanski et al., 2014; Coughlan et al., 2014). Conversely,
pathological relaxation of embryo selection at implantation has been
linked to recurrent miscarriage and associated obstetrical disorders,
such as preterm birth (Brosens et al., 2022; Bortoletto et al., 2022).
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levels. In humans, however, progesterone levels are maintained until
after the delivery and the onset of labour likely reflects loss of
progesterone receptor activity in response to inflammatory uterine
stress signals (Mesiano, 2022). Notably, treatment of pregnant mice
with exogenous progesterone only delays the onset of labour as,
akin to humans, activation of uterine-intrinsic inflammatory
pathways renders parturition inevitable (Siewiera et al., 2023).

Uterine control of placental invasion
In eutherians, the maternal–fetal interface is formed by specialised
placental epithelial cell lineages, termed trophoblast, that access and
modify uterine structures to ensure gas exchange, flow of substrates
to the fetus and disposal of waste products (Soares et al., 2018).
Phylogenetic reconstructions intimated that the first eutherians had
invasive placentas with a haemochorial interface (Wildman et al.,
2006; Elliot and Crespi, 2006; Mika et al., 2022), meaning that
trophoblast cells penetrate the endometrial stroma and its
vasculature to access maternal blood. The ancestral haemochorial
interface is maintained in rodents, humans and other higher
primates, whereas other species evolved less invasive
(endotheliochorial) or non-invasive (epitheliochorial) placentas in
which the trophoblast interfaces with endometrial endothelial cells
(e.g. cats, dogs and other carnivores) or luminal epithelial cells (e.g.
lower primates, such as lemurs and lorises), respectively (Carter and
Enders, 2004). In mice and most primates, trophectoderm cells
(precursors of placental lineages) breach the luminal epithelium and
invade the underlying endometrial stroma to various degrees, but
the developing embryo remains in the uterine cavity (Fig. 2B).
Humans and great apes, however, exhibit interstitial implantation

and deep placentation, meaning that the entire embryo embeds in the
endometrial stroma and invading (extravillous) trophoblast cells
penetrate beyond the endometrium into the inner third of the
myometrium, also known as the uterine junctional zone (reviewed
by Carter et al., 2015). Extravillous trophoblast invasion, which is
both interstitial and endovascular, crucially ensures that maternal
blood supply of the human placenta keeps pace with the
requirements of the growing fetus by converting the decidual and
junctional zone portions of the uterine spiral arteries into high-
capacity fibrinoid conduits (Brosens et al., 2002). Remarkably,
endometrial gene expression patterns in both living and
reconstructed ancestral mammals correlate with the degree of
placental invasiveness, indicating that, rather than acting as a
passive substrate, the uterus controls implantation and the
invasiveness of trophoblast (Stadtmauer and Wagner, 2020b;
Mika et al., 2022). Further, emerging evidence suggests that the
differences in endometrial resistance to trophoblast invasion
between placental mammals correlate with the prevalence in
different species of metastatic cancer, a process also characterised
by stromal invasion of (malignant) epithelial cells (Kshitiz et al.,
2019; Suhail et al., 2022).

Immune tolerance
The embryo and placenta express a combination of maternal and
paternal antigens; this combination is referred to in immunological
terms as semi-allogeneic. The immune system of eutherian
mammals, therefore, had to evolve mechanisms to prevent
immune-mediated rejection of the semi-allogeneic conceptus
(Gobert and Lafaille, 2012). Co-option of novel TEs to rewire
gene networks contributed to resolution of this so-called
‘immunological paradox of pregnancy’ (Male, 2021). For
example, insertion of CNS1, a eutherian-specific TE, in the FoxP3
locus enabled the differentiation of naïve CD4+ T cells into regulatory
T (Treg) cells at the maternal–fetal interface (Samstein et al., 2012).
Although Treg cells express antigen-specific T-cell receptors, their
activation dampens local immune responses through bystander
suppression (Kahn and Baltimore, 2010). Emergence of placental
mammals also coincided with the innovation of a high-affinity ligand
(PD-L2; PDCD1LG2) for programmed cell death protein (PD-1;
PDCD1), an inhibitory T-cell receptor and crucial modulator of
adaptive immunity (Philips et al., 2020). In humans, multiple
additional mechanisms shore up tolerance to placental alloantigens,
including T-cell inactivation through indoleamine 2,3-dioxygenases
(IDO)-dependent tryptophan deprivation, secretion of
immunosuppressive mediators [such as glycodelin A (PAEP),
prostaglandin E2 (PGE2), TGFβ and galectin 1], entrapment of
antigen-presenting immune cells at the maternal–fetal interface, and
the absence of HLA class I and II allotypes on non-invading
trophoblasts (reviewed by Moffett and Shreeve, 2022). Further, in
both humans and mice, trophoblast antigens are decorated with
immunosuppressive glycans, which suppress a systematic immune
responsewhen shed into thematernal circulation (Rizzuto et al., 2022)

Decidualisation
Haemochorial placentation coincided with the inflammatory
reprogramming of endometrial stromal cells into progesterone-
dependent decidual cells (Lynch et al., 2015; Erkenbrack et al.,
2018; Chavan et al., 2021), a process that involves massive changes
in gene expression under the control of novel TE-derived regulatory
elements that confer responsiveness to steroid hormones (Mika and
Lynch, 2022). Decidual cells are defined by their epithelioid
morphology, resistance to oxidative andmetabolic stress signals and

Box 2. Chromosome instability in pre-implantation human
embryos
Aneuploidy, the gain or loss of entire chromosomes compared with the
typical 46-chromosome complement, is the primary cause of embryonic
loss and fetal demise. The impact of aneuploidy on embryonic fitness
depends on the origins and type of errors, and the fate of abnormal
blastomeres. The incidence of human aneuploidies originating during
the formation of the haploid egg (meiosis) is strongly associated with
maternal age (Webster and Schuh, 2017). By contrast, aneuploidy of
paternal meiotic origin is relatively rare and paternal age independent
(McCoy et al., 2015). Numerous aneuploidies also arise during post-
zygotic cell divisions, generating ‘mosaic’ embryos possessing both
normal and aneuploid cells. Aneuploidy alters the dosage of genes on
the affected chromosome and impacts on downstream regulatory
cascades. Thus, the fitness impacts of aneuploidy (or any other
mutation) are highly context dependent (Li and Zhu, 2022). During
human embryonic development, aneuploidy drives natural selection at
the level of both embryos and cells. Rates of both meiotic- and mitotic-
origin aneuploidy decline through development owing, in part, to
embryonic mortality (McCoy et al., 2022). Recent studies
demonstrated that, although meiotic aneuploidies and severe mitotic
aneuploidies are often embryonically lethal (Gruhn et al., 2019; McCoy
et al., 2015), low levels of mosaicism are common in normal
development (Greco et al., 2015; Viotti et al., 2021). Within mosaic
embryos, selection operates against aneuploid cell lineages as they are
progressively diluted by euploid cells. This model is supported by
evidence of chromosomal mosaicism in mice (Bolton et al., 2016; Singla
et al., 2020), human embryos and gastruloids at peri- and post-
implantation stages of development (Shahbazi et al., 2020; Popovic
et al., 2019; Starostik et al., 2020; Yang et al., 2021). The intensity and
nature of selection processes appear to be aneuploidy and cell-type
specific (Shahbazi et al., 2020). For a more detailed discussion, see
Brosens et al. (2022).
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secretory phenotype (Gellersen and Brosens, 2014; Kajihara et al.,
2014). They form the decidua in pregnancy, which serves as the
maternal bed for the invading placenta. The decidua can be shallow
or deep, often reflecting the depth of trophoblast invasion in
different species (Ramsey et al., 1976), and, like the placenta, it is
cast off at parturition (Gellersen and Brosens, 2014).
Decidual transformation of the endometrium starts with an

inflammatory tissue reaction, which synchronises the differentiation
of stromal cells with the recruitment of bone marrow-derived
mesenchymal stem/progenitor cells (BM-MSCs) (Gellersen and
Brosens, 2014; Tal et al., 2019; Diniz-da-Costa et al., 2021) and
natural killer (NK) cells (Strunz et al., 2021). NK cells are effector
lymphocytes of the innate immune system involved in controlling
microbial infections, elimination of stressed and malignant cells,
and allorecognition (Vivier et al., 2008). In the endometrium,
decidualising stromal cells regulate the proliferative expansion and
differentiation of NK cells into functionally and phenotypically
distinct uterine NK (uNK) subsets that are intrinsically tolerant to
invading trophoblast cells and secrete an abundance of cytokines
and angiogenic factors implicated in vascular remodelling (Strunz
et al., 2021; Huhn et al., 2020; Moffett and Shreeve, 2022).
Remarkably, uNK cells can kill intracellular bacteria in placental
trophoblast without compromising the viability of host cells (Crespo
et al., 2020). Thus, the emergence of decidual cells in ancestral
eutherians not only enabled invasive implantation but converted

allorecognition of trophoblast cells by uNK cells into a process that
facilitates haemochorial placentation and safeguards the maternal–
fetal interface against infection.

Spontaneous decidualisation and menstruation
Decidualisation in most species is triggered by attachment of the
blastocyst to the luminal endometrial epithelium (Wang and Dey,
2006). A conspicuous innovation in Catarrhine primates (humans,
apes and Old-World monkeys) is ‘spontaneous’ decidualisation,
meaning that the decidual reaction is initiated in each reproductive
cycle irrespective of embryo attachment (Fig. 2A) (Emera et al.,
2012; Catalini and Fedder, 2020). An inevitable consequence of
spontaneous decidualisation, which is restricted to the upper
endometrial layer, is menstruation (Fig. 2B), defined as bleeding
caused by partial tissue shedding in response to falling progesterone
levels in non-conception cycles. Outside the primate lineage,
menstruation evolved in a handful of other species, including a
small number of bats, the elephant shrew (Elephantulus myurus)
and the spiny mouse (Acomys cahirinus), the only known
menstruating rodent out of 2277 species (Critchley et al., 2020).
Menstruation co-evolved with other reproductive traits, including
extended copulation and spontaneous ovulation (Emera et al., 2012;
Catalini and Fedder, 2020). The onset of bleeding marks the start of
the menstrual cycle (Fig. 3A). Menstruation is followed by a
proliferative or follicular phase, during which ovarian oestradiol
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production synchronises the regeneration of the superficial
endometrial layer with the timing of the LH surge and ovulation
(Shoham et al., 1995). Ovulation in menstruating primates is
characterised by a steep rise in circulating progesterone levels
(Bellofiore et al., 2018), which heralds the start of the secretory or
luteal phase of the cycle.

The purpose of cyclical menstruation has been debated over
many years, with an emerging consensus coalescing around the idea
it is a non-adaptive consequence of spontaneous decidualisation,
meaning that menstruation serves no particular purpose beyond
enabling initiation of a new cycle (Finn, 1998; Emera et al., 2012).
However, menstruation is an inflammatory process that results
in rapid tissue turnover and cyclical rejuvenation involving
activation of tissue-resident mesenchymal and epithelial
progenitor cells that reside in the basal layer (Cousins et al.,
2022). It is now well established that inflammation etches lasting
marks within tissues by increasing stemness and bolstering future
inflammatory responses through epigenetic mechanisms (Naik
and Fuchs, 2022). At the tissue level, this inflammatory ‘memory’
may explain the phenomenon of pre-conditioning or hormesis,
which refers to the observation that repeated exposures of any
organ to low levels of stress confers resistance to stress levels that
otherwise cause tissue damage (Brosens et al., 2009). Indirect
evidence that menstruation ‘preconditions’ the uterus for
pregnancy emerged from studies in adolescent women,
demonstrating an inverse correlation between the incidence of
pregnancy disorders and gynecological age (the interval between
the menarche and first pregnancy) (Brosens et al., 2017).
Menstruation imposes an important novel hurdle on the
implantation process: the wholesale transformation of a mucosa
programmed for cyclical breakdown into a decidua capable of
accommodating an invasive placenta throughout gestation
(Brosens et al., 2022).

Embryo implantation
Tracing the evolution of embryo implantation highlighted the
dependency of human pregnancy on intense uterine remodelling
before and after conception. Here, we discuss the gross changes in
uterine structures that precede embryo implantation and elaborate
how endometrial regeneration prior to ovulation establishes a
spatial template for interstitial embryo implantation and deep
placentation. We then focus on how progesterone-dependent
differentiation of the endometrium creates a pro-inflammatory
implantation window, after which the endometrium either breaks
down or becomes transformed into the decidua of pregnancy
(Fig. 3A). We examine how decidualising stromal cells control the
fate of the endometrium upon closure of the implantation window
before clarifying how the processes involved in interstitial embryo
implantation also safeguard the mother against investment into low-
fitness embryos (Box 1).

Gross uterine remodelling
In each ovulatory cycle, oestradiol-dependent proliferation of the
endometrium followed by progesterone-dependent differentiation
culminates in a short window during which embryo implantation
can take place. In humans, the implantation window opens 6 days
after the pre-ovulatory LH surge and lasts for approximately 4 days,
which corresponds to days 19-22 of a standardised 28-day cycle
(Fig. 3A). Following rapid oestrogen-dependent growth during the
proliferative phase, the post-ovulatory rise in progesterone levels
leads to discrete compaction of the endometrium prior to the
implantation window (Fig. 3B). Upon embryo implantation, the
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decidua accommodating the invading placenta, termed ‘decidua
basalis’, compacts further into a thin and increasingly stiff layer
(Fig. 3B). By contrast, the stiffness (elastic modulus) of the decidua
away from the placenta (decidua parietalis) is a magnitude lower
compared with the decidua basalis and is comparable to non-
pregnant endometrium (Abbas et al., 2019).
Hormone-dependent tissue remodelling before and after

implantation also encompasses the junctional zone myometrium
(Brosens et al., 2002), a specialised layer of circular smooth muscle
that surrounds the endometrium (Weiss et al., 2006). Unlike the
outer myometrium, the junctional zone is derived from the same
embryological mesenchymal precursor as endometrial stromal cells
(Konishi et al., 1984). During reproductive years, the junctional
zone can be visualised by high-resolution ultrasound or T2-
weighted magnetic resonance imaging (MRI) (Fig. 3C). The
thickness of the junctional zone increases in response to oestrogen
signalling, albeit less pronounced compared with the endometrium
(Brosens et al., 1998). It generates anatomically confined peristaltic
contraction waves in a cycle-dependent manner (Brosens et al.,
1995). In the proliferative phase, junctional zone contractions start
predominantly near the cervix and are propagated towards the
uterine fundus (cervico-fundal). Increased amplitude of these waves
during the fertile window facilitates sperm transport towards the
Fallopian tube on the side of the pre-ovulatory follicle (Kunz et al.,
1996; Kunz et al., 1998). Following ovulation, short asymmetrical
contraction waves may play a role in ensuring that implantation
occurs near the fundus of the uterine cavity, whereas fundo-cervical
peristalsis prior and during menstruation likely controls the flow of
effluent (Brosens et al., 1998). The junctional zone changes
dramatically in pregnancy. Focal disruption of this smooth muscle
layer has been observed by MRI around the time of embryo
implantation, well in advance of trophoblast invasion of the
myometrium (Turnbull et al., 1995). In pregnancy, increased
signal intensity renders the junctional zone indistinct on imaging.
Electron microscopy studies have demonstrated that myofibroblasts
are present at the endometrial–myometrial junction. These cells
acquire characteristics of smooth muscle cells in the luteal phase and
in early pregnancy, suggesting that the junctional zone remodelling
involves fibroblast-to-smooth muscle trans-differentiation (Konishi
et al., 1984; Fujii et al., 1989; Brosens et al., 2002). In pregnancy, a
subset of stromal cells in the decidua spongiosa adjacent to
myometrium abundantly express canonical smooth muscle genes,
including ACTA2 (smooth muscle alpha-actin), CNN1 (calponin 1)
andMYLK (myosin light chain kinase) (Vento-Tormo et al., 2018),
raising the possibility that the appearance of myometrial trophoblast
invasion reflects, at least in part, upwards trans-differentiation of
stromal cells into myocytes. Histologically, disruption of the
junctional zone in pregnancy starts in the centre of the placental
bed, which already harbours an abundance of cytotrophoblast and
immune cells by the eighth week of pregnancy, and spreads laterally
like ‘ripples created by a stone dropped into a still pool of water’
(Pijnenborg et al., 1981).
Thus, gross structural changes in uterine zonal anatomy

precede and follow embryo implantation. Insufficient endometrial
growth prior to ovulation, absence of endometrial compaction
following ovulation, and lack of peri-implantation junctional zone
remodelling are all associated clinically with increased risk of
implantation failure (Zilberberg et al., 2020; Craciunas et al., 2019;
Lesny et al., 1999). Next, we discuss how endometrial regeneration
during the menstrual and proliferative phase establishes a spatial
template in preparation for interstitial embryo implantation and deep
placentation.

Endometrial regeneration
Menstruation
Menstruation (reviewed by Salamonsen et al., 2021) always
precedes pregnancy. In the context of implantation, it is important
to emphasise that menstruation is a piecemeal process that involves
simultaneous tissue shedding and rapid re-epithelisation of denuded
areas, a process that likely involves mesenchymal-epithelial transition
(MET) (Garry et al., 2009; Garry et al., 2010). By contrast,
endometrial glands are clonal (Moore et al., 2020), and regenerate
from basal glands that extend horizontally along the junctional zone
(Yamaguchi et al., 2022). Hence, the provenance of the luminal
epithelium (the site of initial embryo–maternal contact) differs from
glandular epithelium. Further, single-cell transcriptomics have
demonstrated that cells expressing both epithelial and mesenchymal
marker genes are present in mid-secretory phase endometrium,
suggesting that repair of the luminal epithelium upon embryo
implantation also involves MET (Lucas et al., 2020).

Proliferation phase
Following menstruation, rising ovarian oestradiol levels lead to
rapid growth of the endometrium, which on average quadruples in
thickness and volume prior to ovulation (Figs 3B, 4A) (Raine-
Fenning et al., 2004a). The rate of endometrial growth over these
10 days is arguably unparalleled in any other tissue. Proliferation of
endometrial cells involves activation of multiple growth factor
signalling pathways (Fang et al., 2022), accelerates with increasing
distance from the basal layer, and peaks around cycle day 10 in the
upper third of the endometrium (Ferenczy et al., 1979), coinciding
with maximal endometrial vascular perfusion and transient tissue
oedema (Raine-Fenning et al., 2004b; Noyes et al., 2019).
Depending on the position within the tissue, endometrial cells are
subjected to different levels of replication stress (Fig. 4A). In the
upper superficial layer, some stromal and epithelial cells express
p16INK4a (CDKN2A) and p21CIP1 (CDKN1A) (Lv et al., 2022),
cyclin-dependent kinase inhibitors commonly used to identify
senescent cells damaged by replication exhaustion (Munoz-Espin
and Serrano, 2014). Notably, expansion of p16INK4a- and p21CIP1-
positive cells in proliferative phase stroma is associated with
oestrogen resistance, lack of endometrial growth and a
pathologically thin endometrium (Lv et al., 2022).

Lymphoid aggregates that reside in the basal endometrial layer
are believed to regulate the spatial responsiveness of endometrium
to ovarian hormones (Christian et al., 2001; Tabibzadeh, 1991;
Tabibzadeh et al., 1993). These aggregates comprise several
hundred cells and consist of a core of B cells surrounded by T
cells and macrophages (Fig. 4A) (Yeaman et al., 1997). Because of
their relatively inaccessible location, lymphoid aggregates are
poorly characterised, although there is evidence that they are
established in each cycle from trafficked circulating immune cells
(Yeaman et al., 2001). Further, IFNγ, secreted by activated T cells in
the aggregates, is a potent inhibitor of cell proliferation and
oestrogen and progesterone signalling (Christian et al., 2001;
Tabibzadeh, 1991; Tabibzadeh et al., 1993). As cells progressively
escape this inhibitory cytokine gradient, proliferation accelerates
and hormone responsiveness increases, thereby restricting cyclical
tissue remodelling to the superficial layer (Fig. 4A).

Alongside positional proliferation, morphogen gradients
and membrane-bound cell–cell signalling govern cell fate
determinations during the proliferative phase (Garcia-Alonso et al.,
2021). For example, secreted WNT7A is essential for normal
Mullerian tract development (Parr and McMahon, 1998; Roly et al.,
2018). In cycling endometrium, its expression is confined to the
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newly formed luminal epithelium and upper glands during the post-
menstrual repair phase (Fan et al., 2012). As the proliferative phase
unfolds, expression becomes restricted to the luminal epithelium,
thereby creating a WNT gradient (Fig. 4A) (Garcia-Alonso et al.,
2021). Activation of the canonical WNT/β-catenin pathway in
response to oestradiol promotes ciliogenesis of epithelial cells when
cell–cell-dependent NOTCH signalling is low (Haider et al., 2019).
However, beyond theWNTmicroenvironment, highNOTCHactivity
commits cells to a secretory epithelial phenotype following ovulation
(Garcia-Alonso et al., 2021). In development, WNT7A maintains
expression of HOXA10 and HOXA11, homeobox transcription
factors that provide cells with specific positional identities on the
anterior-posterior axis (Roly et al., 2018). Both transcription factors
are abundantly expressed in proliferative phase stromal cells (Talbi
et al., 2006), indicating that cell fate specification is not confined to
the epithelial compartment.
These observations challenge the view that the proliferative phase

serves merely to thicken the endometrium in preparation for

implantation. Instead, oestradiol activates multiple mechanisms,
including intense positional proliferation and morphogen gradients,
involved in cell specification and tissue patterning to establish a
spatial template onwhich progesteronewill act during the luteal phase
(Fig. 4B). Rapid growth of the arteries and angiogenesis, leading to
the formation of a subluminal capillary network (Rogers and Gargett,
1998), adds to the complexity of endometrial microenvironments that
are established during the proliferative phase. As placentation is
deeper in humans than in other primates (Carter et al., 2015), aberrant
spatial organisation of the endometrium during the proliferative phase
could arguably have disproportional impacts on embryo implantation
and pregnancy outcome.

Endometrial differentiation
Early secretory phase
Ovulation leads to a rapid drop in ovarian oestradiol production and
rising progesterone levels, which peak 7-8 days later (Johnson et al.,
2015). Proliferative activity in the superficial endometrium
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decidua of pregnancy.
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decreases sharply (Ferenczy et al., 1979), alongside declining
WNT7A levels (Fan et al., 2012). Luminal epithelium and abutting
glands upregulate prostaglandin-endoperoxide synthase 1 and 2
(PTGS1 and PTGS2), rate-limiting enzymes in the biosynthesis of
prostaglandins from arachidonic acid. Whereas PTGS1 is confined
to the epithelium, PTGS2 is also upregulated in perivascular stromal
cells (Marions and Danielsson, 1999; Garcia-Alonso et al., 2021).
In parallel, endometrial prostaglandin concentrations increase
following ovulation, characterised first by a steep rise in
prostaglandin F2 alpha (PGF2α) levels and then a more modest
increase in PGE2 concentrations (Downie et al., 1974). PGF2α is a
potent vasoconstrictor and may account for the sudden reduction in
endometrial vascular perfusion following ovulation (Raine-Fenning
et al., 2004b). Transition to the secretory (luteal) phase also
coincides with upregulation of genes encoding metabolic enzymes,
transporter proteins and ion channels (Talbi et al., 2006). In luminal
epithelium, dynamic changes in ion channel activities lead to
progressive absorption of fluid from the uterine cavity, a process that
facilitates embryo–endometrial interactions (Ruan et al., 2014;
Salker et al., 2011). Cytoplasmic accumulation of glycogen
accounts for the appearance of prominent subnuclear ‘vacuoles’
in glandular epithelial cells (Fig. 4B), whereas mitochondrial
biogenesis gives rise to ultrastructural ‘giant’ mitochondria
(Cornillie et al., 1985). There is also evidence of a metabolic
switch in stromal cells, exemplified by rapid progesterone-
dependent downregulation of iodothyronine deiodinase 2 (DIO2),
which catalyses the conversion of prohormone thyroxine (3,5,3′,5’-
tetraiodothyronine, T4) to bioactive thyroid hormone (3,5,3’-
triiodothyronine, T3), a master regulator of cellular energy
expenditure and basal metabolism (Kim, 2008). However, DIO2
persists in subluminal stromal cells following ovulation (Fig. 4B),
marking metabolically active cells that are progesterone resistant
and produce an abundance of extracellular matrix (ECM)
components (Lucas et al., 2020).

Mid-secretory phase/the implantation window
Endometrial gene expression changes abruptly during the mid-
secretory (midluteal) phase, reflecting an acute stress response that
heralds the start of the implantation window (Wang et al., 2020).
This endometrial stress response recapitulates all aspects of a
decidual reaction induced by implanting embryos in other
mammals, including onset of apocrine glandular secretions,
prominent stromal oedema, influx of extra-uterine cells and
decidual reprogramming of stromal fibroblasts (Fig. 4B). The
emergence of phenotypic decidual cells coincides with the closure
of the implantation window and transition to the late luteal phase of
the cycle (Noyes et al., 2019; Gellersen and Brosens, 2014).
Canonical decidual cells with the ultrastructural appearance of those
in pregnancy are most prominent around spiral arterioles (Lawn
et al., 1971). These stromal cells have the biophysical properties of
pericytes, are often clonogenic, and express selectively vascular
adhesion protein 1 (also known as amine oxidase copper containing
3, AOC3), suggesting they serve as gatekeepers of infiltrating extra-
uterine cells (Gharanei et al., 2021; Lucas et al., 2016; Murakami
et al., 2014). Perivascular decidual cells have also been implicated
in maintaining tissue haemostasis during the menstrual cycle and
upon spiral artery remodelling in pregnancy (Lockwood et al.,
2007).
The trigger for the mid-secretory stress response in human

endometrium is unclear. In hormonally primed rats and mice,
decidualisation can be elicited by non-specific stressors, including
intra-uterine oil injection, trauma (scratching or crushing) or

electrical stimulation of uterine horns, but only in the presence of
a luminal epithelium before and after the insult (Lejeune et al.,
1981). In mice, the ability of the luminal epithelium to transduce
diverse stress-related inputs into a deciduogenic signal is linked to
the presence of protease-activated receptors, including the epithelial
sodium receptor (ENaC; SCNN1) (Ruan et al., 2012). Although
these evolutionarily conserved receptors are also activated by
human blastocyst-derived serine proteases and elicit Ca2+-
dependent gene expression (Shmygol and Brosens, 2021; Brosens
et al., 2014), they cannot account for spontaneous decidualisation in
non-conception cycles. A likely explanation for the endogenous
deciduogenic signal in human endometrium is the cumulative
impact of stress signals associated with rapid tissue growth and
vascular changes. Endometrial perfusion increases markedly during
the midluteal phase (Raine-Fenning et al., 2004b), thus imposing
modest oxidative stress on a small number of cells already damaged
by replication stress in the preceding proliferative phase. This may
be sufficient to trigger the release of inflammatory mediators and
alarmins, including IL33, IL1A and high-mobility group box 1
protein (HMGB1), which in turn propagate the pro-inflammatory
response across the tissue (Salker et al., 2012; von Zglinicki et al.,
2000). Notably, menstruating species in the primate lineage all lost
the ability to synthesise endogenous ascorbic acid (vitamin C), a
major antioxidant and important for collagen synthesis and tensile
strength (Drouin et al., 2011; Hiller et al., 2012). Hence, it is
plausible that relaxation of the ECM combined with reduced cellular
antioxidant defences created a permissive environment for the
emergence of an endogenous deciduogenic signal by
simultaneously enhancing stromal proliferation (and replication
stress) and cellular susceptibility to oxidative stress.

Prominent mid-secretory stromal oedema (Fig. 4B) results from
transluminal fluid absorption, increased vascular permeability, the
near absence of lymphatic vessels in superficial human
endometrium (Cornillie et al., 1985; Rogers et al., 2009), and
rapid deposition of hyaluronan (Salamonsen et al., 2001).
Hyaluronan, a major ECM component, is intimately involved in
rapid tissue remodelling and repair. As a high molecular weight
polymer, it binds water very efficiently, thereby regulating the
viscoelasticity and stiffness of tissues (Amorim et al., 2021).
However, breakdown by hyaluronidases generates low molecular
weight hyaluronan polymers, which regulate proliferation,
migration and activity of immune and other cells upon binding of
various receptors, including CD44. Endometrial oedema typically
separates subluminal DIO2-positive stromal cells from underlying
decidualising stromal cells (pre-decidual cells) that express
progesterone-dependent marker genes, such as SCARA5 (Fig. 4B)
(Lucas et al., 2020). As mentioned, a hallmark of decidualisation is
accumulation of uNK cells (Catalini and Fedder, 2020), which
rapidly outnumber other endometrial immune cells, including T
cells, B cells, macrophages and dendritic cells. A recent study
involving uterine transplant recipients demonstrated that uNK cells
are replenished from the circulation (Strunz et al., 2021). They
represent the only proliferating immune cell population in mid-
secretory endometrium and differentiate in response to local cues
into functionally distinct subsets (Fig. 4C). How uNK cells diversify
into subsets in the endometrium remains contentious. One study
concluded that uNK cells acquire sequentially killer cell
immunoglobulin-like receptors (KIRs) and the ectonucleotidase
CD39 (ENTPD1) as the cycle progresses, marking loss of
proliferative capacity and a switch from a pro-inflammatory to a
cytokine-producing and angiogenic phenotype (Strunz et al., 2021).
However, this linear differentiation trajectory of uNK subsets has
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been challenged by single-cell transcriptomic data (Guo et al.,
2021). Further, spatial mapping in early gestation demonstrated that
cytokine-producing KIR+CD39+ uNK cells, which highly express
P16INK4a and resemble senescent immune cells (Rajagopalan and
Long, 2012), reside in the upper decidua where they engage
placental cells through binding of KIRs to a limited repertoire of
HLA class I molecules expressed by extravillous trophoblast. By
contrast, cytotoxic KIR−CD39− uNK cells are found deeper in the
tissue (Wang et al., 2021).

Late secretory phase: menstruation versus pregnancy
The emergence of decidual cells upon closure of the implantation
window represents an inflection point in the menstrual cycle after
which the endometrium either breaks down or is transformed into
the decidua of pregnancy (Gellersen and Brosens, 2014). Insights
into the mechanisms that control fate decisions in late secretory
phase endometrium has emerged from primary 2D and 3D cultures,
which revealed that decidualising endometrial stromal cells not only
give rise to anti-inflammatory decidual cells but also decidual-like
senescent cells that are targeted and eliminated by activated
cytotoxic uNK cells in a progesterone-dependent manner
(Fig. 4D) (Brighton et al., 2017; Lucas et al., 2020; Rawlings
et al., 2021).

Decidual cells
In vivo, adenylyl cyclase activity rises in secretory endometrium in
parallel with increasing tissue concentrations of the second
messenger cyclic adenosine monophosphate (cAMP) (Tanaka
et al., 1993; Pansini et al., 1984). In culture, cAMP-dependent
protein kinase A (PKA) activation triggers an acute stress response
in endometrial stromal cells, characterised by a burst of reactive
oxygen species (ROS) production and release of IL1A, HMGB1
and IL33 and other inflammatory mediators (Al-Sabbagh et al.,
2011; Brighton et al., 2017; Salker et al., 2012). PKA signalling also
activates evolutionarily conserved decidual transcription factors,
including CEBPB, FOXO1, GATA2 and HAND2, which in turn
leads to sequential regulation of distinct transcriptional programmes
(Erkenbrack et al., 2018; Gellersen and Brosens, 2014). Several
decidual transcription factors physically engage the liganded
progesterone receptor and bind as multimeric complexes to
primate-specific TEs and other cis-regulatory DNA elements in
promoter and enhancer regions of target genes (Christian et al.,
2002; Vrljicak et al., 2018; Mika and Lynch, 2022). Hence,
progesterone is essential for maintaining decidual gene expression,
although insufficient for initiating this differentiation process
(Brosens et al., 1999). As is the case in vivo, the temporal
changes in gene expression in decidualising primary cultures cease
after approximately 4 days and anti-inflammatory decidual cells
emerge (Lucas et al., 2020). Compared with their progenitors,
decidual cells are remarkably resistant to oxidative and metabolic
stressors, reflecting progesterone-dependent silencing of multiple
stress-activated signalling pathways and increased free radical
scavenging capacity (Leitao et al., 2010; Kajihara et al., 2006;
Muter et al., 2018). Further, decidual cells become extensively
connected by gap junctions, which aids the formation of a decidual
bed in pregnancy (Winterhager and Kidder, 2015).

Decidual-like senescence cells
As is the case in the endometrium, primary cultures harbour stromal
cells damaged by replication stress during proliferative expansion
(Brighton et al., 2017). Although only a discrete population, pre-
senescent cells are largely responsible for the acute release of

inflammatory mediators at the start of the decidual pathway, but
subsequently fail to differentiate and emerge after 4 days as
decidual-like senescent cells (Lucas et al., 2020; Rawlings et al.,
2021). Decidual and canonical senescent cells share multiple
characteristics, including cell cycle arrest, expression of survival
genes, heightened autonomy from environmental cues, and rounded
appearance with abundant cytoplasm and enlarged nuclei (Brighton
et al., 2017). However, decidual-like senescent cells are
progesterone insensitive and produce a complex secretome,
termed senescence-associated secretory phenotype (SASP), rich
in ECM proteins and proteinases, growth factors, chemokines,
angiogenic factors and inflammatory mediators (Fig. 4D) (Rawlings
et al., 2021). Notably, whereas the acute inflammatory response
produced by pre-senescent cells at the start of the decidual pathway
promotes de-differentiation and clonogenicity of stromal cells
(Brighton et al., 2017), decidual-like senescent cells induce
bystander (paracrine) senescence in neighbouring decidual cells,
resulting in rapid propagation of sterile inflammation, even under
conditions of continuous progesterone signalling (Brighton et al.,
2017; Lucas et al., 2020; Rawlings et al., 2021). Thus, the default
outcome of spontaneous decidualisation is endometrial
inflammation and ECM breakdown. Further, senescent cells
recruit neutrophils, which in turn reinforces paracrine senescence
through ROS production (Lagnado et al., 2021). In human
endometrium, macrophages and neutrophil granulocytes
accumulate immediately prior to menstruation in a stroma
abounding with decidual-like senescent cells (Fig. 4E, top)
(Evans and Salamonsen, 2012; Noyes et al., 2019).

Notably, cell state divergence is also apparent in secretory glands,
which harbour P16INK4a-positive epithelial cells during the
implantation window. Although accounting for only 2-3% of cells
(Brighton et al., 2017), P16INK4a-positive epithelial cells secrete key
implantation factors that are also canonical SASP components,
including dipeptidyl peptidase 4 (DPP4), growth differentiation
factor 15 (GDF15) and insulin-like growth factor binding protein 3
(IGFBP3) (Rawlings et al., 2021).

Decidual–uNK cell cooperation
To avoid menstrual tissue breakdown, decidual cells must engage
cytotoxic uNK cells. Even before they emerge as fully differentiated
decidual cells, progesterone-dependent pre-decidual cells selectively
secrete factors involved in uNK cell recruitment, activation and
recognition of stressed/senescent cells, including CXCL14, IL15 and
TIMP metallopeptidase inhibitor 3 (TIMP3), respectively (Lucas
et al., 2020). In primary co-cultures, uNK cells isolated from mid-
secretory endometrial biopsies employ granule exocytosis to kill
emerging decidual-like senescent cells with total precision and
without a need for exogenous priming (Brighton et al., 2017; Kong
et al., 2021; Lucas et al., 2020). Similarly, prolonged decidualisation
leads to disintegration of endometrial assembloids, 3D cultures that
consist of gland-like organoids and primary stromal cells (Rawlings
et al., 2021). However, pre-treatment of assembloids with dasatinib, a
broad-spectrum tyrosine kinase inhibitor that eliminates pre-
senescent/stressed stromal cells, generates exceptionally sturdy
decidualised assembloids (Rawlings et al., 2021).

By co-opting uNK cells, pre-decidual cells rejuvenate the
endometrium during the implantation window. Further,
decidualisation in both humans and mice leads to recruitment of
BM-MSCs, which compensate for cell attrition, bestow plasticity on
the tissue, and give rise to a distinct subset of prolactin-producing
decidual cells in pregnancy (Diniz-da-Costa et al., 2021; Tal et al.,
2019). The dependency of decidual–uNK cell cooperation on
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continuous progesterone signalling imposes a bivalent state on the
midluteal endometrium (Fig. 4D), which, upon successful
implantation and corpus luteum rescue, result in the formation of
the decidua of pregnancy (Fig. 4E, bottom). In non-conception
cycles, however, declining progesterone levels in the late secretory
phase first gradually reverse expression of progesterone-induced
and -repressed genes and and then disable decidual–uNK cell
cooperation, which is followed by the sudden demise of uNK cells
(Moffett and Shreeve, 2022), a steep rise in P16INK4-positive
stromal and epithelial cells (Brighton et al., 2017), and influx of
senescence-associated neutrophils and macrophages (Evans and
Salamonsen, 2012). Once initiated, these processes render
menstrual breakdown inevitable. Hence, the window of
opportunity for implanting human embryos to rescue ovarian
progesterone production and reverse the default trajectory of the
decidualising endometrium towards tissue destruction is very
narrow. In an experimental primate model, menstruation becomes
unavoidable if progesterone is withdrawn for 36 h or longer
(Slayden and Brenner, 2006). In humans, the incidence of early
pregnancy loss increases exponentially with each day that
implantation is delayed beyond the midluteal implantation
window (Wilcox et al., 1999).

Interstitial embryo implantation
Mammalian implantation involves a concatenation of discrete steps,
starting with closure of the uterine cavity, hatching of the embryo
through the surrounding zona pellucida, orientation and attachment
of the conceptus to the apical surface of the luminal epithelium, and
invasion of the underlying endometrial stroma (Wang and Dey,
2006). It should be noted that the inferred mechanism of embryo
implantation in humans differs substantially from other mammals,
such as mice (Box 3). Unfortunately, in situ observations of human
embryo implantation are confined to historical samples in which the
blastocyst is already embedded in the stroma with the overlying
luminal epithelium almost repaired (Hertig et al., 1956). Hence, our
understanding of the epithelial phase of the implantation process is
based on extrapolations from animal studies, or derived from simple
in vitro models, such as co-culturing surplus IVF embryos donated
for research on top of a monolayer of Ishikawa cells, an endometrial
adenocarcinoma cell line (Aplin and Ruane, 2017; Aberkane et al.,
2018; Ruane et al., 2022). The development of complex 3D
endometrial culture systems, such as assembloids, is a promising
approach to the study of human embryo implantation (Rawlings
et al., 2021), although it remains challenging to simulate the spatial
organisation of human endometrium. Another exciting
development is the ability to generate human blastoids from naïve
pluripotent stem cells (Terhune et al., 2022; Kagawa et al., 2022).
Blastoids not only recapitulate embryonic cell fate specifications,
but this technology overcomes the lack of scalability and
reproducibility inherent to the use of chromosomally diverse
human embryos (Yu et al., 2022 preprint).
Despite the limitations of current in vitro systems, important

insights into epithelial phase of the implantation process have
emerged. The pre-implantation human blastocyst consists of an
outer trophectoderm layer that surrounds the inner cell mass and a
fluid-filled cavity, the blastocoel. Trophectoderm cells are the
precursors of placental lineages, whereas inner cell mass cells give
rise to the pluripotent epiblast and primitive endoderm, precursors
of the embryo proper and yolk sac, respectively (Meistermann et al.,
2021). Around the time of hatching, epiblast signals promote
differentiation of the adjacent trophectoderm, termed polar
trophectoderm, leading to loss of cell cycle genes and induction of

primitive syncytiotrophoblast markers, including human endogenous
retrovirus (HERV) genes that are essential for trophoblast fusion and
placental development (Liu et al., 2022; Ruane et al., 2022; Lv et al.,
2019). Consequently, human embryos orient such that the polar
trophectoderm attaches to the endometrial epithelium. In co-culture
studies, attachment upregulates adhesion-related genes in

Box 3. Implantation in mice
The inferred mechanism of embryo implantation in humans differs
substantially from other mammals, such as mice. Mice are litter-bearing
mammals and a robust barrier function of the luminal epithelium is
important to ensure synchronised implantation of multiple blastocysts.
Murine blastocysts in the uterine cavity can arrest temporarily in
development, known as diapause (Box 4), while awaiting a maternal
nidation signal. This signal, a finely calibrated rise in maternal oestrogen
levels, renders the murine endometrium receptive, activates dormant
embryos, and enables adherence of trophectoderm away from the inner
cell mass (mural trophectoderm) to the apical surface of the luminal
epithelium (Fig. 2B). Embryo attachment then triggers local mucosal
inflammation, which in turn initiates the decidual stromal reaction and is
followed by shallow mural trophectoderm invasion (Ma et al., 2003).
Although oestradiol also rises transiently during the midluteal phase of
the menstrual cycle (Fig. 3A), there is no evidence that it serves as a
nidation signal (Ghosh et al., 1994; Smitz et al., 1993). Further,
comparative single-cell transcriptomic analysis demonstrated that the
implantation poles of human and mouse blastocysts (polar and mural
trophectoderm, respectively) share only a limited number of enriched
genes (Liu et al., 2022).

Box 4. Embryo–endometrial communication: diapause
and biosensing
Implantation depends on bi-directional communication between the
blastocyst and endometrium. Encoded in this communication is
information on maternal and embryonic fitness, which in turn can lead
to activation of species-specific reproductive suppression mechanisms.
For example, blastocysts in over 130 mammals, although not humans,
respond to the presence or absence of specific endocrine or endometrial
cues by entering or exiting diapause, a state of suspended animation
characterised by complete or near-complete cessation of cell division
(Renfree and Fenelon, 2017). Depending on the species, implantation
can be postponed for days or months and serves to either maximise the
number of offspring in each season or synchronise parturition with
environmental conditions favourable to offspring survival. By contrast,
embryo biosensing depends on the endometrium receiving and
decoding fitness information from the conceptus. Genome-wide
expression profiling demonstrated that, depending on their fitness,
bovine embryos elicit distinct endometrial transcriptomic responses
predictive of subsequent pregnancy outcome (Bauersachs et al., 2009;
Mansouri-Attia et al., 2009). The prominence of a given mechanism of
reproductive suppression in a species does not necessarily imply loss or
redundancy of other mechanisms. For example, upon transfer into mice
uteri, sheep blastocysts, which do not exhibit diapause, become growth
arrested and quiescent under induced diapause conditions, resuming
development when subsequently placed into sheep uteri (Ptak et al.,
2012). Similarly, flushing the mouse uterus with spent culture medium
from low-fitness human IVF embryos triggers an endometrial stress
response, whereas the medium of successfully implanted human
embryos upregulates endometrial metabolic and implantation genes.
Remarkably, cues from competent human embryos strongly induce the
expression of murine-specific, implantation-specific genes (Prss28 and
Prss29), which are lost in humans and other primates (Brosens et al.,
2014). These observations suggest that evolutionarily conserved, rather
than acquired, mechanisms underpin the exchange of fitness
information between individual embryos and the endometrium.
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trophectoderm cells, accelerates their differentiation into invasive
multinuclear primitive syncytiotrophoblast, enhances hCG secretion
and kickstarts progesterone production (Liu et al., 2022; Ruane et al.,
2022). Although multiple candidate adhesion molecules and
receptor–ligand pairs have been implicated in embryo–epithelium
interactions, a precise understanding of the molecular events in the
epithelial phase of the implantation process is still lacking.
A notable observation in co-culture experiments is that human

blastocysts often penetrate epithelial monolayers seemingly without
much effort. Decidualising stromal cells in 2D and 3D cultures also
migrate rapidly to co-cultured human blastocysts with individual
cells appearing to compete for attachment to the polar trophectoderm
before pulling the conceptus into the endometrial matrix (Berkhout
et al., 2018; Weimar et al., 2012; Rawlings et al., 2021).
Pharmacological depletion of pre-senescent/stressed cells in
endometrial assembloids massively accelerates the emergence of
anti-inflammatory decidual cells, which in turn entrap co-cultured
human embryos into a robust but static environment devoid of
blastocyst–stromal cell interactions (Rawlings et al., 2021). Together,
these observations cast doubt on the assumption that breaching of the
luminal epithelium by the conceptus is the rate-limiting step in the
implantation process and, by extension, the point of implantation
failure. Instead, interstitial embryo implantation seems to rely on
close cooperation between epithelial cells and underlying DIO2-
positive stromal cells, resulting in a transient epithelial attachment
phase, which is followed by rapid encapsulation of the entire
conceptus by decidualising stromal cells. Human embryos also
secrete hyaluronidase 2 (HYAL2) (Kong et al., 2021), which
plausibly promotes interstitial implantation by destabilising oedema
associated with high molecular weight hyaluronan.

The implantation checkpoint: embryo biosensing and selection
A pivotal aspect of the implantation process in all mammals is
exchange of fitness information between the mother and conceptus
(Box 4). Compelling evidence of this phenomenon in humans
emerged from in vitro migration assays that modelled interstitial
implantation (Macklon and Brosens, 2014). These studies revealed
that undifferentiated endometrial stromal cells migrate to low-
quality human blastocysts, as assessed by morphological criteria,
but not high-quality embryos. Decidualisation enhances the
migratory capacity of stromal cells. However, in contrast to their

undifferentiated counterparts, decidualising cells migrate
selectively to high- but not low-quality embryos (Berkhout et al.,
2018; Weimar et al., 2012). How decidualisation switches the
behaviour of stromal cells to embryonic fitness signals is unclear,
although selective migration to high-quality blastocysts has been
linked to embryonic secretion of hsa-miR-320a (MIR320A), an
evolutionarily conserved microRNA essential for pre-implantation
embryo development (Fig. 5A) (Berkhout et al., 2020; Feng et al.,
2015). Further, endometrial epithelial cells and decidualising
stromal cells are exquisitely responsive to serine proteases
produced by low-quality embryos and mount an endoplasmic
stress response that silences secretion of pivotal implantation
factors, including HB-EGF (HBEGF) and LIF (Fig. 5B)
(Teklenburg et al., 2010; Brosens et al., 2014; Shmygol and
Brosens, 2021). More recently, spent medium of good-quality IVF
blastocysts that either implanted successfully or not was used to
explore how implantation could trigger a menstruation-like reaction,
even in patients receiving progesterone therapy (Kong et al., 2021).
In co-culture experiments, medium conditioned by unsuccessful
embryos completely abrogated uNK cell-mediated killing of
senescent cells, whereas spent medium from successful embryos
had no impact. Loss of immune surveillance of decidual-like
senescent cells was attributed to lack of HYAL2 activity in
unsuccessful embryos and binding of high molecular weight
hyaluronan to the ECM receptor CD44 on uNK cells (Fig. 5C)
(Kong et al., 2021). There is also evidence that exposure of
decidualising cells to conditioned medium from low-quality IVF
blastocysts increases IL8 (CXCL8) secretion and promotes
recruitment and activation of neutrophils (Fernández et al., 2022).
Conversely, ROS secreted by decidual-like senescent cells may
damage trophoblast and limit invasion (Fig. 5C) (Deryabin et al.,
2022).

Thus, multiple strands of evidence suggest that low-fitness
embryos upend the poised endometrial state during the implantation
window by activating mechanisms that will lead to tissue
destruction. By contrast, soluble signals produced by high-quality
embryos likely impact on the decidual transformation of the
endometrium (Box 4). In this context, several studies focussed on
hCG signalling in decidualising cells, but the findings are
inconsistent (Mann et al., 2022). However, hCG does induce
uNK cell proliferation (Kane et al., 2009), which promotes the
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Fig. 5. Natural selection of human embryos at implantation.
Multiple mechanisms in decidualising endometrium ensure rapid
elimination of low-fitness embryos. (A) Pre-decidual cells migrate
and actively encapsulate embryos that breached the luminal
epithelium. This migratory response is disrupted upon
implantation of a poor-quality embryo, which has been linked to
the lack of embryonic secretion of hsa-miR-320a. (B) Proteases
secreted by low-fitness embryos induce prolonged and
disordered Ca2+ signalling in pre-decidual cells, causing
endoplasmic reticulum (ER) stress, attenuated secretion of
implantation factors and induction of chemokines involved in
recruitment of neutrophils and monocytes. (C) Low-fitness
embryos secrete high molecular weight hyaluronic acid
(HMWHA), which, upon binding to CD44 on uNK cells, blocks
targeting and elimination of stressed/senescent cells, thereby
causing sterile tissue inflammation through secondary
senescence and menstruation-like breakdown of the
endometrium, irrespective of circulating progesterone levels.
Further, reactive oxygen species (ROS) produced by decidual-
like senescent cells and immune cells may damage the
conceptus and impair or preclude further development.
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emergence of cytokine producing KIR+CD39+ uNK cells involved
in vascular remodelling (Wang et al., 2021). Clinically, embryo
biosensing followed by physiological elimination of low-fitness
embryos can account for the high incidence of occult pregnancy
losses in young healthy women, the age-dependent decline in
fertility rates, and the limited implantation rates in IVF (Brosens
et al., 2022; Pirtea et al., 2021). However, fitness impacts of genetic
errors in human embryos are origin dependent and chromosome
specific, meaning that blastocysts that harbour certain aneuploidies,
such as meiotic trisomies of smaller chromosomes, could plausibly
escape the implantation checkpoint, thus explaining the age-
dependent increase in clinical aneuploid pregnancy losses (Box 2)
(Brosens et al., 2022).

Concluding remarks
Once considered a black box, our understanding of the mechanisms
that control human embryo implantation is accelerating rapidly,
aided by powerful new technologies including single-cell ‘omics’,
spatial transcriptomics, blastoids, organoids and assembloids.
Although much is yet to be discovered, the notion that human
reproduction is inefficient is pertinently wrong; in view of the
challenges posed by chromosomal instability in embryos, human
reproduction should be considered strategic, malleable and
ruthlessly selective. Although the basic principles of pregnancy in
humans are shared with all mammals, the combination of interstitial
implantation, deep haemochorial placentation and dependence on
robust embryo selection in great apes are underpinned by novel
reproductive traits, including intense spatial and temporal
remodelling of the endometrium and junctional zone myometrium
in response to oestradiol and progesterone signalling, respectively.
Perhaps the most surprising aspect of these human-specific
reproductive traits is that intrinsic chromosome instability in
embryos is countered by cellular processes in the endometrium
with strong pathological connotations, including replication stress,
DNA damage, cellular senescence, inflammation and tissue
destruction. However, as outlined in this Review, these processes
in cycling endometrium also imbue the implantation process with
exceptional plasticity, exemplified clinically by high cumulative
live birth rates.
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